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REPORT 1258 

A WIND-TUNNEL TEST TECHNIQUE FOR MEASURING THE DYNAMIC ROTARY STABILITY 
DERIVATIVES AT SUBSONIC AND SUPERSONIC SPEEDS l 

By BENJAMIN H. BEAM 

SUMMARY 

A method is described for measuring the dynamic stability 
derivatives of a model airplane in a wind tunnel. The char- 
acteristic features of this system are that single-degree-of-freedom 
oscillations were used to obtain combinations of rolling, yaw- 
ing and pitching motions; that the oscillations were excited 
and controlled by velocity *feedback which permitted operation 
under conditions unfavorable for more conventional types of 
oscillatory testing; and that data processing was greatly simpli- 
Jied by using analog computer elements in the strain-gage 
circuitry. 

The system described is primarily for measurement of the 
damping derivatives CzP (damping in roll), C,J- Cm; (damping 
in pitch), Cnr-- Cab (damping in yaw), and the cross derivatives 
C2r-Czg (rolling moment due to yawing) and CnP (yawing 
moment due to rolling). The method of festing also permits 
measurement under oscillatory conditions of the static deriva- 
tives C, (rolling momenf due to sideslip), CnP (yawing moment 
due to sideslip), and Cm, (pitching moment due to angle of 
attack). All these derivatives are of particular importance in 
estimating the short-period oscillatory motions of a rigid 
airplane. 

Most of the studies of the lateral derivatives have been 
made on the basis of steady turning or rolling motions. 
Theoretical calculations of the derivatives are largely based 
on this assumption. The steady turning or rolling flow 
technique has been used in the systematic studies of the 
lateral derivatives in the Langley stability tunnel (e. g., refs. 
2 and 3). Curved or rolling flight is approximated in the 
test section of this wind tunnel by causing the air to follow 
a curved or spiral path past a fixed model. At high speeds, 
the rolling derivatives have been measured by steadily 
rotating a sting-mounted model in a wind tunnel with a 
dynamometer and measuring the damping in roll, yawing 
moment due to rolling, and the side force due to rolling. 
These methods and other techniques have been described 
and referred to in various NACA publications on the stability 
derivatives for airplane and missile configurations. 

A small number of experimental data are included to illustrate 
the general scope of results obtainable with this system. 

INTRODUCTION 

One important problem in the dynamic motions of air- 
planes is t.he nature and the stability of the oscillatory modes. 
In measuring the dynamic stability derivatives which apply 
to these motions there are certain advantages in employing 
oscillation methods in a wind tunnel, and the development 
of such methods has always been attractive to investigators. 
Most of the early measurements of damping in pitch were 
made from oscillation tests of a model in a wind tunnel. 
Damping in roll and damping in yaw have also been measured 
in this way but, in general, experimental difficulties have 
prevented the wide application of this method to the lateral 
motions. This is particularly true in the case of t.he cross 
derivatives, yawing moment due to rolling, and rolling 
moment due to yawing, although in one recently developed 
method (ref. 1) the yawing moment due to rolling has been 
successfully measured using a two-degree-of-freedom 
oscillatory technique. 

The purpose of this report is to describe an oscillation 
technique for measuring the lateral and longitudinal dynamic 
stability derivatives in a wind tunnel. It was developed 
primarily for testing at high subsonic or supersonic speeds 
and for this reason three features are believed to be of 
special interest. One of these is the single-degree-of-freedom 
oscillatory system in which various components of pitch, 
roll, and yaw were obtained by varying the axis of oscilla- 
tion. Second, the forcing system comprised a feedback 
loop in which velocity feedback was used to excite and con- 
trol the amplitude of the model oscillation. A third feature 
is a system of strain-gage data processing in which electronic 
analog computer elements were used in measuring the ampli- 
tude and phase position of the oscillatory strain-gage deflec- 
tions. The advice and assistance of the Ames instrument 
development branch was extremely valuable in developing 
this system of data processing. 

The test apparatus is capable of measuring the moment 
derivatives which arise from angular motions of the airplane. 
This includes the rotary damping derivatives CQ, c,n,f 
Cm,, and C,,- Cna ; the cross derivatives CnP and C,,-Cl,; 
and the displacement derivatives C,,, C,, and Cmo. These 
derivatives are of particular importance in estimating the 
short-period oscillatory motions of a rigid airplane. 

Two systems of axes are used in this analysis. The sta- 
bility system of axes with the positive directions of moments 
and angles referred to this system are illustrated in figure 1. 
The oscillation axes used for wind-tunnel measurements 

1 Supersedes NACA TN 3347 entitled “A Wind-Tunnel Test Technique for Measuring the Dynamic Rotary Stability Derivatives Including the Cross Derivatives St High ME+& Num- 
hers,” by BenjmGn H. Beam. 1965. 
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are illustrated in figure 2 and defined with respect to the 
stability axes by a set of direction cosines. Primes are used 
with aerodynamic moment and axis designations referred 
to the oscillation system of axes. 

The various stability derivat,ives are defined as follows: 

c,; 2bNI 
pV2Sb ba 

cnB -2 2 
pV‘%h bp 

Q,: 2bN’ 
0 pV2Sb ,$b 

b 2v 

The following symbols are used in the report: 
A, B, * * *, direction cosines between primed and unprimed 
H, J 1 a,xes 
I moment or productj of inertia! depending on 

subscript, positive where negative moment 
results from positive acceleration, slug-ft’ 

K mechanical spring constant, positive where 
negative moment results from positive defler- 
tion, ft-lb/radian 

I, aerodynamic rolling moment,, ft-lb 
M aerodynamic pitching moment, ft-lb 
N aerodynamic yawing moment, ft-lb 
P mechanical damping-moment coefficient, posi- 

tive where nega,tive moment results from 
positive velocity, ft-lb seclradian 

R resistance, ohms 
S wing area, sq ft 
T torque, ft-lb 
V air velocity, ft/sec 
b wing span, ft 
c mean aerodynamic chord, ft 

; 
voltage, volts 
frequency of sinusoidal oscillation, cps 

9 
outsput t.ransfer function, Y input 

i galvanomcter current,, amp 

ontal reference 

FIGURE I.--The stability system of axes is an orthogonal system of axes 
having its origin at the center of gravity and in which the .a axis is in 
the plane of symmetry and perpendicular to the relative wind, the x 
axis is in the plane of symmetry and perpendicular to the a axis, and 
the y axis is perpendicular to the plane of symmetry. Arrows indicate 
the positive directions of motions and moments. 

strain-gage calibration constant, amp/volt/unit 
load 

rolling velocity, radians/see 
pitching velocity, radianslsec 
yawing velocity, radianslsec 
time, set 
stability system of axes, defined in figure 1 
system of axes used for oscillation t&s, defined 

with respect to the stabi1it.y axes by the direc- 
tion cosines 

angle of attack, radians 
mean or static angle of attack, deg 
angle of sideslip, radians cscept where noted 
pitch angle, radians 
roll angle, radians 
yaw angle, radians 
angle of rot,ation of model about, x’ axis, radians 

except where not,ed 
small angular displacement about y’ or z’ axis, 

radians 
direction angles, defined in figure 2, deg 
phase angles of u, T,‘, and E!,’ with respect to an 

arbitrary reference 
air density, slugs/cu ft 
circular frequency of oscillation, .%rf, radianslsec 
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about the x’ axis. Equilibrium requires that the summation 
of the moments about the x’, y’, and z’ axes be equal to zero. 
The equation for small angular oscillations about a static 
equilibrium condition can be written in terms of a single 
variable 

The sign convention of figure 2 requires that if I%*,*, P,t, 
and Kd are considered positive quantities, their respective 
moments must be prefiued by a negative sign since they op- 
pose the motion. The quantity AL’ is the sum of all aero- 
dynamic moments about the axis of oscillation arising from 
angular deflection, velocity, acceleration, etc., about the static 
equilibrium condition. The aerodynamic moments due to 
angular acceleration and higher-order terms are generally 
neglected in stability calculations, permitting the assumption 
that 

FIGURE 2.-The orientation of the oscillation axes, the x’, y’, z’ system, 
is obtained by assuming an orthogonal system which is originally 
coincident with the stability system at zero angle of attack and with 
the same positive directions for forces, moments, and motions as being 
successively rotated about the y axis by an angle 7 and the x axis by 
an angle X. 

wind-off circular frequency of oscillations, ra- 
dians/sec 

(‘1 d( 
dt 

I..\ d”( 1 ___ 
;-; dt’ 

maximum value of a sinusoidally oscillating 
quantity ( ) 

A( 1 incremental value of a quantity ( ) 
Subscripts define the particular axis or motion to which the 
general symbol applies. 

THEORY 

SINGLE-DEGREE-OF-FREEDOM OSCILLATORY SYSTEM 

The general dynamic motion of a rigid airplane with no 
moving cont,rol surfaces requires six differential equations. 
Three of these define translation and three define rotation 
about the center of gravity. If the center of gravity of a 
model airplane is fixed in a wind tunnel, the equations involv- 
ing translation can be eliminated and the motion is defined in 
terms of rotary motions and derivatives by three equations. 

/ The system can be further restrained so that rotation occurs 
about one arbitrary fixed axis only. In this case the motion 
is defined by one equation even though simultaneous rolling, 
pitching, and yawing motions may be involved. 

Assume an orthogonal coordinate system, the x’y’~’ system 
(fig. 2), the origin of which is at the center of gravity of the 
model airplane and in which rotation of the model is always 

(2) 

and equation (1) could be written 

I,i,s+ r,,-; pVSb2C,1 j 6+(Kzr-; pVPSbCl; j rs=T,, & 
(4) 

It is apparent from the left-hand side of equation (4) that 
C,: is an aerodynamic damping coefficient ancl that a nega- 
tiee value of C,: would result in a, positively damped oscilla- c 
tion. A negative value of the coefficient CL; would result in a 
positive restoring moment about the axis of oscillation. The 
sign convention is thus parallel to that of the stability deriva- 
tives about the st.ability axes. 

Equations expressing the equilibrium of moments about the 
y’ and z’ axes for small oscillations about the x’ axis can also 
be written 

-I,,;+AM’-K,w,~=O (5) 

--I,l,lSf~N’-K,lE,,l=~ (6) 

Equations (5) and (6) can be written in this simple form only 
if ‘up and e,l are sufficiently small compared with u that their 
effects are negligible in equations (l), (5), and (6) except for 
the terms Ky*eVl and Kge,~. This is accomplished by limiting 
~~1 and e,’ to very small v’alues but making K,l and K,l very 
large. In other words, the model would be relatively easy 
to deflect about the x’ axis but very stiff about the y’ and Z’ 
axes. From a development similar to that of equations (3) 
and (4) it can be shown that 

1 - Iz~,G+5 pV2Sb 

The values of the aerodynamic coefficients in equations 
(4)) (7), and (8) will change with the orientation of the oscilla- 
tion axes in the wind tunnel and the attitude of the model 
with respect to the air stream. These changes are related to 
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changes in magnitude and relative contribution of the sta- 
bility derivatives, ordinarily measured about the stability 
axes defined in figure 1. The geometric relation between the 
oscillation system of axes (the x’y’z’ system) and the stability 
axes (the xyz system) is completely defined by tne direction 
cosines between the two systems. These can be symbolized 
in the following matrix form 

X/ y’ 2’ 
- 

.A D G 

B E H (9) 

C F J 
I I I 

where, for example, the cosine of the angle between the y and 
z’ axes is H. 

The numerical evaluation of these direction cosines is 
somewhat complicated since the stabi1it.y axes do not remain 
fixed with respect to the oscillation axes as the angle of at’tack 
is changed, as is apparent from a study of figures 1 and 2. 
It will be shown later in the appendix that certain simplifica- 
tions are possible in numerical calculations by a less direct 
approach through a set of model axes. Since, however, in 
the present discussion the direction cosines are considered 
only in symbolic form, it is not necessary to introduce this 
additional step. 

Small angular motions about t,he axis of osc.illation can be 
resolved into component motions of roll, pit,&, and yaw 
about the stability axes. The relative magnitude of each 
component depends on the direction cosine between the r’ 
axis and the roll, pitch, or yaw axes, and, wit,h the approxi- 
mations sin (r=6, cosine u=l 

A0 =Ba (j =q=B& 00) 

A#= cu iL’=r=c; 

The moments about the stability axes can be expressed in 
terms of the aerodynamic stability derivat.ives 

AL=; pV2Sb [F& (cc/i+ cl,&+ G, j)+ c&V)] (11) 

AM=; pVWf$ (c~:,$+C,l~)+C,~(Aa)] (12) 

AN=; pV2Sb [& (Cnpl;+Cn~~+Cngb)+Cno ag)] (13) 

For straight flight, as in the wind tunnel, a=e and p=--4. 
The aerodynamic moments can then be referred back to the 
oscillation system of axes through the direction cosines. 

AL’=A(AL)+B(AM)+(7(AN) (14) 

AM’=D(AL)+E(AM)+F(AN) (15) 

AN’=G(AL)+~~(AM)+ J(AN) (16) 

Thus, the aerodynamic moments indicated in equations 
(l), (5), and (6) for oscillation about an arbitrary axis are 
defined in terms of moments about the stability axes by 
equations (14), (15), and (16). The aerodynamic coefficients 
which depend on the angular velocity of the model can be 
derived in terms of the stability derivatives as 

c++ a+ --=A2C:~+AC(C”p+C~T-C~B)+ 

; pVSba$ 

B2 g (Cm,+C&C2 (C,+$) 

C,,;=AD’C+CD (Cam-‘1,>+““~(‘-.+‘-)+ 

AFCn*+ FC (CL,- CnB) 

c~,=AGC+?G((:,-CL:~)~HB ; (C+k)S 

AJc:,ytCJ(Cn~-Cc) 

(17) 

(18) 

(19) 

Those coefficients which depend on displacement of the model 
become 

C&C- bL’= -ACC+ B2 ; Cm,- C2C,, 
,oV2Sb bc (2’0) 

Cm;=-DCCi,+EB ; Cm,-FCCno (21) 

C,;= - GCG,+ HB ; Cmm- JCC,, (22) 

In equation (17) CZ; is the aerodynamic damping coefficient 
measured about the axis of oscillation in the wind tunnel. 
If the x’ axis coincides with the x axis, the oscillation would 
be pure roll. In this case A’= 1 and AC=B2=C2=0 so 
the measured damping coefficient would be Cl?, the damping- 
in-roll coefficient. Similarly, a pure pitching or yawing 
oscillation would result in the measurement of damping in 
pitch or damping in yaw. 

In general, one stability derivative can be obtained from 
each separate physical measurement. In equations (17), 
(18), and (19) there are eight stability derivatives which 
depend on angular velocity; however, these derivatives form 
only five independent terms. The derivative Cm4 always 
appears with Cm, in the above since, for the pure rotary 
motions considered, p is always equal to dr. (See ref. 4.) 
Sim.ilarly, since T= -/3 * in a test of this type, C,,--Cl, appears 
as one term and C,,--C,, as another. The evaluation of 
these five terms (CZ,, Cn,, C,,+C,,, C,,-Cl,, and C,,-- 
Cng) requires five unique measurements. 

Equations (17), (18), and (19) can be considered in a 
purely formal way as the basis for a system of equations 
containing the unknown stability derivatives. Assuming 
that five values of (226, C,:, or Ca; are available from wind- 
tunnel measurements, alokg with the appropriate direction 
cosines for the axes about which the measurements .were 



A WIND-TUNNEL TEST TECHNIQUE FOR MEASURING THE DYNAMIC ROTARY STABILITY DERIVATIVES 5 

made, a system of five equations could be formed. These 
equations could then be solved simultaneously for the five 
stability derivatives, providing the equations are mathe- 
matically determinate. 

The necessary values of CZg, C-a, or Cn; which lead 
to the velocity derivatives and CZ;, C,;, or C,; which 
lead to the static derivatives are obtained from physical 
measurements of the model oscillation through equations 
(4), (7), and (8). Measurements can be made of the frequency 
of oscillation W, the input torque T,l, the oscillation ampli- 
tude CT, and the small angular deflections ~1 and ~~1. There 
is considerable latitude in the choice of axes of oscillation 
and the particular quantities to be measured within the 
general confines of mathematical determinateness of the 
stability derivatives. Note, however, that ~~1 and cp~ are 
inherently more difficult to measure than u. The small 
displacements and high stiffness required about the y’ and z’ 
axes to maintain the validity of equations (4), (7), and (8) 
impose a limitation on the accuracy of measurements about 
these axes. Friction, backlash, and interaction become of 
increasing importance as the displacement is reduced. Some 
measurements must be made in conjunction with large static 
pitching moments or aerodynamic disturbances of a random 
nature and these factors will affect the design of the appara- 
tus and the accuracy of the system. These factors, and 
the methods used to relate the measurements of T,t, w, u, E”’ 
and e,I to the derivatives C,:, C,:, etc., are discussed in 
subsequent sections. The direoctioncosines which relate the 
derivatives C,;, C,:, etc., to the various stability deriva- 
tives in equations (1;) through (22) are given in the appendix. 

FEEDBACK CONTROL 

As indicated in the preceding section, measurement of the 
aerodynamic derivatives depends upon an analysis of a 
single-degree-of-freedom oscillation defined by equation (4) 
repeated here for convenience. 

In the case of a free oscillation T,? would become zero and 
the oscillation would be a damped sinusoid. Use of this 
method is generally limited to test conditions which would 
not result in oscillatory instability as there is no contr 11 over 
the amplitude once the oscillation is initiated. 

For the forced oscillation T,g in equation (4) is a sinusoidal 
function of time. One case of interest is where the frequency 
of the applied torque corresponds to the undamped natural 
frequency of the oscillatory system. At this frequency the 
inertia moments balance the restoring moments and the 
final amplitude after the decay of initial transients corre- 
sponds to a balance between the damping moments and the 
applied torque. The maximum angular velocity of oscilla- 
tion can be obtained with a minimum of input torque at 
this frequency, as the entire input is used to overcome the 
damping. It is thus a desirable operating point both from 
the standpoint of power requirements and accuracy in 
measuring the damping. 

One disadvantage with the forced-oscillation system oper- 
ating at the resonant frequency is that, as with the free- 
oscillation system, testing cannot be conducted where oscilla- 
tory instability is encountered. At high Mach numbers and 
high angles of attack where minor changes in test conditions 
may produce changes in the aerodynamic derivatives, a 
steady-state oscillation is very difficult to maintain. In 
situations such as this, feedback control of the oscillation 
should be considered as it provides a means for automatically 
stabilizing the amplitude and the frequency of the oscillation 
for any variation of damping, either positive or negative, 
within the capacity of the forcing system. 

The system of feedback control used in the present ap- 
paratus evolved from unsuccessful experiments with the 
forced-oscillation technique described above at high subsonic 
Mach numbers. After the development of the feedback 
system it was found that Bratt, Raymer, and Miles in 
England had used a similar technique in 1942 but the results 
of their experiments are not generally available. The 
principle of operation is similar to that of the amplitude- 
stabilized feedback oscillator. 

The oscillatory system was formed by the moment of 
inertia of the model and the stiffness of the restoring springs. 
Torque was applied to this system in the present case through 
a linkage with an electromagnetic shaker. It is convenient 
to think of the shaker system as a transducer which converts 
an electrical signal input into a torque. A strain gage 
indicating the angular deflection of the model converted the 
oscillation amplitude into an electrical signal. Feedback 
was accomplished by using amplified voltcage from the strain 
gage as a source of electrical signal to the shaker. Velocity 
feedback was used in this case and the strain-gage signal of 
oscillation amplitude was differentiated electronically before 
being introduced into the shaker. 

Thus, for a system with velocity feedback 

T,t =gG 

and equation (4) could be written 

(23) 

l&6+ 
( 

Pzf-; pVSb2 Cl;-g) ck+(K,+ pV2Sb C2; 
> 

c=O 

(24) 

If g and the aerodynamic derivatives are constants, equation 
(24) is linear. The case of interest is where 

P z1-i pVSb%‘q-g=Q (25) 

In this case, 
a=zf$wt CW 

The oscillations are sinusoidal and of constant amplitude. 
The oscillation frequency is the undamped natural frequency, 
given by 

J Kz+ pV2Sb 65; * 
CO= 

I z’z’ 

The peak amplitude of the oscillation, Cr, cannot be defined 
independently of initial conditions if the terms in equation 
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(24) are constant as assumed. Amplitude stabilization would 
require that the final oscillation amplitude be independent 
of the initial conditions in the same sense that a “limit cycle” 
is independent of the starting conditions in a nonlinear 
oscillatory system. The transfer function, g, of the feedback 
loop can be designed to vary with oscillation amplitude in 
such a way as to produce positive feedback at low amplitudes 
and negative feedback at high amplitudes with a limit cycle 
at some intermediate amplitude. This type of stabilization, 
however, would appear to conflict with the requirement that 
g and the other coefficients in equation (24) be constants for 
sinusoidal motion. These conflicting requirements can be 
satisfied within practical limits by allowing g to vary wit,h 
oscillation amplitude, but at such a slow rate that it remains 
essentially constant through one cycle of operation. 

A rudimentary circuit of a quasi-linear element which 
could be inserted in the feedback loop to stabilize the ampli- 
tude of oscillation is shown schematically in figure 3 (a) 
along with a sketch of its transfer function, figure 3 (b). The 
thermister is the nonlinear control element. It is charac- 
terized by a high negative t,emperature coefficient of resist- 
ance and as current, either alternating or direct, is passed 
through it the resultant heating causes its resistance t.o 
change. The thermal and heat-transfer characteristics of 
the thermister determine the time required to reach a new 
resistance following a change in current,. There are many 
variations of the principle illustrated in figure 3 which would 
produce an equivalent result and which can be found in the 

/Vacuum tube 

(0) 

output o 
Input 

? .- 
-6 
E 
z 

(b) 

Operotlng range for on 
aerodynamically stable configurotlon 

t 

Peak input voltage 

\, 
Aerodynamically unstoble 

(a) Simplifiec 1 schematic. 
(b) Transfer function for several fised positions of the control 

potentiometer. 

FIGURE 3.-Simplified characteristics of the amplitude-control circuit. 

Model dynamics 

~---f-f--~ 

Electromagnetic Feed bock 
shaker strain gage 

Amplitude 
control 

(a) 

r---- 
G-1 Applied torque TX, 

Cross torque cv, or cz~ 
r------------ 

T----- 
-- 

Model dynamics : 

TO 
galvanometers 

To counter 

(b) 

(a) Excitation system. 
(b) Computing system. 

FIGURE k--Block diagram of the excitation and computing systems. 

literature on amplitude stabilization of electronic oscillators. 
A schematic diagram of the complete feedback control 

loop is shown in figure 4 (a). With this system the input 
torque, given by gi, can be made equal and opposite to the 
damping moments acting on the model for any value of a 
by an adjustment of the potentiometer in figure 3 (a). For 
amplitudes less than the desired amplitude the damping 
moment will be less than the applied torque and oscillations 
will build up from rest. For amplitudes greater than 
desired, the damping moments will be greater than the 
applied torque and oscillations will decrease. The only 
stable operating point is where 

P z1-a pVSb2C,;-g=o (28) 

and this can be shown t,o apply whether the aerodynamic 
damping is positive or negative. 

ANALOG COMPUTING SYSTEM 

By use of the feedback control system described, the 
static derivatives C,=, C,,, and CZ8 can be determined from 
equation (27) and an accurate measurement of the change 
in oscillation frequency between the wind-on and wind-off 
test conditions. The equation for Cl; can be obtained from 
equation (27) 

Three values of C,: are required for different orientations of 
the axis of oscillation. Inserting these values into equation 
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(20) with the appropriate direction cosines provides three 
equations for the unknowns Cma, C,,, and Cza. 

Measurement of the velocity derivatives is more difficult. 
Early attempts to record the output of strain gages with an 
oscillograph and then to measure the amplitude and phase 
position of each trace proved to be an expensive and time- 
consuming task even with the aid of automatic digital com- 
puting equipment. The analog computing system discussed 
herein performs the same mathematical processes as the 
digital computing machine, but does so at the time the data 
are taken and results in a considerable saving in the time and 
expense devoted to data processing. 

The measurements required in this case for a determination 
of the velocity derivatives were u, T,* and either ey, or ~~1. 
Each of these time-varying quantities can be represented as 
a Fourier series in wt by the general expression 

F(t)=ao+al cos wt+b, sin wt+ . . . a, cos wt -f-b, sin rwt 
(30) 

where w is the fundamental frequency of oscillation. Higher- 
order terms are always present to some degree because of 
buffeting of the model, wind-tunnel vibration, etc. ; however, 
only the fundamental component in F(t) is of interest. The 
amplitude and phase position of the funclamental can be 
determined from the Fourier coefficient,s, defined by 

1 * 
a,=- 7i- s 

F(tj cos wt d(a) --* b,=-1 s r n- F(t) sin wt d(wt) 
-T 

(31) 

If strain-gage bridges are located in the oscillation appa- 
ratus in such a position as to iudicate c, T,l, and E,,‘, the 
output of each gage would be proportional to the product of 
applied voltage and gage deflection. Introducing a voltage 
into each gage of Z cos wt results in a gage output current of 

i=kEF(t) cos wt 

As in equation (30), w is the fundamental frequency of oscil- 
lation so that upon expanding, equation (33) becomes 

i-ke’ a, cos ut+?$+$ cos 2ut+bl sin wt cos wt+ . . . 
> 

(34) 

A well-damped deflection galvanometer having a time con- 

stant much greater than $ will not respond to currents of 

fundamental frequency and above. Its deflection will be 
.proportional to the average galvanometer current, given by 

1 S 2* 
. - ho-- 27r 0 i d(wt) (35) 

With equat#ions (34) and (35), an expression for a1 can be 
obtained in terms of the average galvanometer current 

Wherein i,, and e can be measured directly at the time of 
the test and k can be obtained from a static calibration of 
the strain gage. Simularly, bl can be measured using a sine 
wave of voltage in place of a cosine wave. The 90’ phase 
separation between the sine and cosine voltages was obtained 
in this case using the input and output, respectively, of an 
electronic integrator. This integrator and other active com- 
ponents in the computing circuitry consist essentially of high 
gain d-c amplifiers in which the input and feedback imped- 
ances to each amplifier determine its specific function. 
Similar components were used in the feedback loop described 
previously. 

A schematic diagram of the computing system used is 
shown in figure 4(b). The signal source for the sine and 
cosine voltages was the strain gage, indicating oscillation 
amplitude, that was used to excite the feedback loop. The 
reversing switch was used to apply the sine and cosine 
voltages alternately to each gage. These voltages were 
measured simultaneously with each reading by means of the 
rectifier circuits el and e2 and the galvanometers. The feed- 
back loop through the attenuator was used to suppress any 
unusually large variations in direct current through the 
integrator, and the capacitors prevented this direct current 
from appearing at the output. 

The in-phase and out-of-phase components, aI and bl, 
respectively, of T,l, E,,‘, e,~, and u are used to determine the 
maximum amplitude and relative phase position of each. 
Only the component of T,!, ELI, and E,’ in quadrature with 
the amplitude is required to calculate the mechanical damp- 
ing and the velocity derivatives. For example, with the 
notation 

u=Z sin (wt-FpL) 

T,,=??=r sin (wt+v) 

c~,=E,,~ siu (wt+E) 

the velocity coefficients for each oscillation condition can be 
calculated from equations (4) and (7) as 

Tz! sin (V-P) 
WZ 1 

(38) 

Four values of Cl: and one of C,! were required in this 
case which, with eiuations (17) and (18)) yielded the five 
rotary derivatives Cl,, C,,, C&+-C,. , Ct,- Cl;, and C+-- Cnj. (I 

OPERATION 

DESCRIPTION OF APPARATUS 

The oscillation mechanism necessary for the dynamic tests 
was housed in a sting assembly which was matched to the 
dynamic model and the wind-tunnel model support in such 
a way that it was interchangeable with the stings normally 
used for static testing. It was thus possible to measure the 
static force and moment characteristics and the dynamic 
stability derivatives under identical test conditions. 
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FIGURE 5.-Model airplane installed on oscillation mechanism in wind- 
tunnel test section. 

A model airplane mounted on the oscillatiou equipment 
in the wind tunnel is shown in the photograph, figure 5. An 
electromagnetic shaker was housed in the enlarged portion 
of the sting downstream of the model airplane. Special 
model construction was required to obtain the necessary 
strength with a minimum of weight since a reduction in 
weight simplified many of the other design problems, par- 
ticularly those relating to the supporting springs. Designed 
for a wing loading at high Mach numbers of approximately 
400 pounds per square foot, the weight of the model in 
figure 5 is approximately 5 pounds per square foot of wing 
area. 

A general view of the electronic equipment needed outside 
the test section is shown in the photograph, figure 6. The 
console on the right in the photograph is the power supply 
for the electromagnetic shaker housed in the model support- 
ing sting. The panel rack on the left contaius a counter for 
measuring frequency and the various electronic feedback 
and computing elements illustrated in the block diagrams, 
figure 4. The galvanometer and read-out system, not shown 
in figure 6, is the same as that normally used for static tests 
with a strain-gage balance. 

Two oscillation mechanisms were built, one for pure pitch- 
ing or yawing oscillations in which the oscillation axis was 
perpendicular to the longitudinal axis of the supporting 
sting, and one for combined rolling and pitching or rolling 
and yawing in which the axis of oscillation was inclined 45’ 
to the longitudinal axis of the sting. The essential features 

of these mechanisms are shown in figures 7, 8, and 9. The 
crossed flexure pivots position the model and provide the 
spring restraint for the oscillatory system. The axis at 
which the flexure pivots cross is the axis of oscillat.ion. 
Several sets of flexure pivots of different thickness were 
provided which permitted testing at frequencies from ap- 
proximately 3 to 10 cycles per second. Each of these 
mechanisms could be driven by a shaker with a reciprocating 
motion of the push rod. 

The measurement of e,l and E,’ required special considera- 
tion as these quantities are more difficult to measure than 
w, T,?, and u because of the small deflections involved. 
An examination of equation (17) shows that all the stability 
derivatives which depend on angular velocity of the .model 
influence the damping of the oscillation. The four groups of 
ter.ms which appear in equation (17) can be resolved into 
measurements of w, T,,, and g in a series of four tests in 
which all test conditions remain constant except for changes 
in orientation of the axis of oscillation. In other words, 
C,,+C& C+ and c?,+-C,~ can be resolved by measure- 
ments of clamping, but only the sum of the cross derivatives 
C,n+C,r- CLB can be determined in this .manner. At least 
one additional measure.ment of E”< or e,f, represented by 
equations (18) and (19), is required to resolve these two 
derivatives. 

FIGURE G.-Genera! view of electronic feedback and computing equip- 
ment used for the oscillation tests. 



?a. 
,- 

FIGURE 7.-Oscillation mechanism with oblique axes showing the cross- 
torque gage used in early tests. 

Figure 7 represents an early version of the oscillation 
mechanism in which ~~1 was measured to obtain Pnp in a 
rolling and pitching oscillation. Accuracy was expected to 
be a maximum here because moments clue to other aero- 
dynamic derivatives would have little effect on ~~1. This is 
apparent on substituting the direction cosines for a rolling 
and pitching oscillation from the appendix into equation 
(18). The strain gage indicating Q,’ was of the unboncled 
type since the angular deflection about the y’ axis was 
&0.0005 radian or less. The deflection was held within 
the above limits by the raclial flexures inclicated as the cross- 
torque restraint in figure 7. This gage was used for testing 
only during rolling ancl pitching oscillations and was mechan- 
ically disconnected for other orientations. 

This mechanical arrangement of the oscillation mechanism 
proved workable but experience gained over several months 
of wind-tunnel testing revealed some undesirable character- 
istics which could be corrected by redesign. One difficulty 
was due to an interaction between the cross torque and the 
applied torque. Analysis showed that deflections of the 
trunnion to which the crossed flexure pivots and the cross- 
torque restraint were attached could result in an indicated 
Q,. It was established from a static calibration that ap- 
proximately 6 percent of a moment about the x’ axis was 
measured as a moment about the y’ axis because of this 
interaction, and thus a correction to the measured values of 
Cnk’. was necessary which amounted to approximately 6 
perient of the measured values of Cl;. 

One other difficulty with this system was due to unbalanced 
stat,ic aerodynamic moments, which do not appear in the 
dynamic equations because they remain constant, but which 
are also supported by the mechanism. The largest of these 
moments is normally the pitching moment, and the range 
of angles of attack for testing in the pitching mode is thus 
limited by the permissible angular deflection of the flexure 
pivots caused by the static pitching moment. It is seen 
that the cross derivative CnP is measured in a combined 
rolling and pitching mode in which the test range of angles 
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of attack is limited by these conditions; whereas the remain- 
ing lateral-directional derivatives are measured in a rolling 
and yawing mode or in a pure yawing mode and are thus not 
limited in angle-of-attack range by aerodynamic pitching 
moments. 

A consideration of these features of the method for measur- 
ing CnD led to the design of an alternative arrangement in 
which the other cross derivative, C,--CcI,, was measured. 
This was done by measuring the rolling moment in a yawing 
oscillation. This rolling moment includes a contribution 
from the sideslip derivative C, which at high speeds can be 
several times the magnitude of the moment due to Gz,--CIB. 
(The roll axis becomes the z’ axis according to the convention 
of this report, and the moments are apparent from equations 
(8), (19), and (22) and the direction cosines for a yawing 
oscillation from the appendix.) Experience with the analog 
computing s.ystem, however, indicated that the accuracy of 
the system was adequate for separating the damping deriva- 
tives from the stiffness derivatives by their difference in 
phase, and that Cir-Cclg could be measured in the presence 
of the larger moments clue to Ci. 

An expanded view of the yawing oscillation mechanism 
which incorporates a cross-torque gage for measuring 
Cz7-CLa is shown in figure 8. The z’, or cross-torque, axis 
lies along the longitudinal axis of the model. A strain-gage 
briclge for measuring ez’ was formecl consisting of two legs 
from each of the two unbended strain gages shown in the 
photograph. Static tests showecl that this gage arrange- 
ment eliminated interaction clue to forces and moments 
about all other axes. Subsequent wincl-tunnel tests showed 
that the lateral-directional derivatives could be measured 
through a wide range of angles of attack without the neccs- 
sity of trimming the pitching moments. It was found that 
operation was fairly smooth even at high speeds and angles 
of attack near the stall. This improvecl performance was 
attributed to the fact that there were only slight changes in 

FIGURE %-Expanded view of a later version of the osciliation mecha- 
nism for yawing or pitching illustrating a more staisfactory method 
for measuring the cross torque. 
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FIGURE S.--Revised version of the mechanism illustrated in figure 7 in 
which the cross-torque gage has been eliminated. 

effective angle of attack or lift on the wing during a yawing 
oscillation compared with the larger changes encountered 
during a pitching or rolling oscillation. This design thus 
proved to be superior to that shown in figure 7, and, as a 
result, the cross-torque gage and cross-torque restraint were 
eliminated from the roll and yaw oscillator as shown in 
figure 9. 

The accuracy of the data obtained with this equipment 
is believed to be sufficient for most dynamic stability calcu- 
lations. Errors directly assignable to the computing system 
are quite small, within 1 percent of the full-scale capacity 
and lo of arc in the phase angle. Tare damping caused by 
friction and other internal effects in the moclel and mecha- 
nism was measured prior to each run, but this measurement 
was used primarily as an indication cf trouble in the equip- 
ment since it was normally less than 2 percent of the full- 
scale capacity and was neglected in computing the deriva- 
tives. The vibration characteristics of the sting and 
supporting .system introducecl an additional possibility of 
error which required careful study. Calculated vibration 
characteristics of the support were used as a guide to evalu- 
ate the test conditions under which support vibration might 
affect the measured results, but these calculations were not 
found to be reliable because it was difficult to properIS 
account for the various degrees of freedom of the supporting 
structure. In some cases it was necessary to attach guy 
wires between the sting and the tunnel wall to prevent the 
support system from vibrating at the model oscillation fre- 
quency and thus introducing errors in the measurements. 
In most tests, however, these objectionable frequencies were 
avoided and the results were the same whether the guy 
wires were attached to the sting or not. Through tests 
with independent variations in Mach number and Reynolds 
number, both of which affect the model oscillation frequency, 
and with the guy wires on and off, it was established that 
systematic errors due to model support vibration could be 
eliminated within the random error of the measurements. 

The probable random error in a single measurement as 
a percent of the full-scale damping capacity was found to 
be less than 136 percent for both C,: and C,: from an anal- 

ysis of repeated measurements on astypical kodel for Mach 
numbers from 0.25 up to 0.94 at zero angle of attack. The 
accuracy of measurement of a single derivative depends on 
its relation to the maximum value of C,:. Thus, for con- c 
ventional airplane models the combined random and system- 
aticuncertainty in a single damping derivative C,, C.,-Cn3, 

or C&SC,. would be of the order of 5 percent, with the 

cross derivitives, C,, and CI,-Cc,B, being subject to the 

same increment of certainty as Clp and C,,--C,, . 
B 

EXPERIMENTAL DATA 

Figures 10, 11, and 12 have been prepared to illustrate 
the general scope of data obtainable with the oscillation 
apparatus described. These data were obtained at a low 
Mach number for the model configuration illustrated in 
figure 5. Similar data have been obtained at Mach numbers 
up to 0.95. 

The effects of oscillation amplitude and reduced frequency 
at a selected angle of attack can be studied from measure- 
ments of the type shown in figure 10. It is sometimes 
desirable to measure only the effect of frequency or ampli- 
tude on certain combinations of derivatives, such as 
C,,+CLr-CL. in figure 10, since this can be done with fewer 

B 
measurements. These data confirm the assumption of line- 
arit\- in the small oscillations of an airplane about an equi- 

-.24 

-.I6 

Peak oscillation amplitude. F, deg 

FIGGRE lO.-The variation of some of the lateral stability derivatives 
with oscillation amplitude for two values of reduced frequency. 
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FIGURE 11. The variation of the longitudinal stability derivatives with angle of attack. 
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FIQURE la.-The variation of the lateral stability derivatives with angle of attack. 



12 REPORT 1258-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

Gp. per deg 

(b) Cl,, CL, vs. am 

FIGURE 12.-Concluded. 

librium position and indicate that the effects of frequency 
on the stability derivatives are negligible for the test 
conditions represented in figure 10. 

Data of the type illustrated in figures 11 and 12 can be 
used to establish t.he variation of the stability derivatives 
with angle of attack for a mean oscillation amplitude and 
frequency as this is the form most useful in dynamic stability 
calculations. The data shown in figure 11, along with the 
lift-curve slope, are the aerodynamic parameters of primary 
importance in estimating the short-period dynamic longi- 
tudinal stability of an aircraft with the control surfaces 
fixed. The short-period motion in this case is essentially a 
pitching about the center of gravity combined with vertical 
translation. The desirability of experimentally separating 
C,. and Cm4 and evaluating other derivatives which may 
aff&t the longitudinal motion depends on the circumstances 
and on the precision required but, in general, the important 
features of the motion can be estimated without these 
additional aerodynamic parameters. In the stick-free case, 
a third degree of freedom is introduced by the elevator motion 
about its hinge which may markedly affect the response of 
the airplane and for which the aerodynamic contribution 
of the free control surface would have to be considered (ref. 5). 

Data of the type illustrated in figure 12 can be used in 
calculating the dynamic lateral stability of an airplane. 
Analysis of the lateral oscillatory motion with the controls 
fixed is more complicated than in the longitudinal case 
because of the three degrees of freedom-rolling, yawing, 
and sideslipping. The aerodynamic parameters required, 

in addition to those shown in figures 12 (a) and (b), are the 
side-force coefficients due to rolling velocity, yawing velocity, 
and sicleslip (ref. 6). The side force due to sideslip can be 
measurecl or estimated from steady-flight considerations 
alone. Measured values of the side forces clue to rolling 
velocity and yawing velocity would be desirable, but in 
many cases these forces are small or can be shown to have 
negligible effect on the motion (ref. 7). Here again, as in 
the case of the short-period longituclinal motion, free-control 
surfaces may radically alter the aircraft response (ref. 5). 

Many of the suggested methods for calculating dynamic 
lateral stability (e. g., refs. 5., 6, and 7) clo not consider the 
effects of sideslip velocity p because, for typical airplane 
configurations used in the past, these effects have been 
shown to be small (ref. 3). This may, however, not be the 
case for current and future airplane types. The effects of 
C,. and C,. on the lateral oscillatory motion can be approxi- 
mitcd by’introducing the terms CLr-C,, and C+--C,. 

into the equations of motion (ref. 6) in place of CL7 and c,+y 
This would indicate that, in the absence of independent 
measurements of C,. and CnB, it would be desirable to obtain 
values of G,?-CLj kd C+---Cns from oscillation tests since 
this would approximately account for the possible effects 
of sideslip velocity in stability calculations. 

AMES AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

MOFFETT FIELD, CALIF., Sept. 20, 1954. 



APPENDIX 

General methods are available for evaluating the direction 
cosines for an arbitrary rotation of one system of axes with 
respect to another. (See, e. g., ref. 8.) In the present 
case it would be most useful if the direction cosines were 

-. evaluated-in terms of the angles 1 and X illustrated in figure 2. 
The angle q represents the mechanical angle by which the 
axis of the crossed flexures is offset from the longitudinal 
axis of the sting and X is determined by keying the oscillation 
apparatus to the sting in the proper rotational position. 
The direction cosines used in equations (17) through (22) then 
become 

A=cos ff, cos v-sin or, sin 71 cos X 

B=sin I) sin X 

C= - (sin LY, cos q+cos (Y, sin 7) cos X) 

D=sin a, sin X 

E=cos X 

F=sin X cos LY,~ 

G=cos a, sin ofsin Q, cos IJ cos X 

H=-sin X cos 11 

J= -sin ay, sin q+cos CY, cos 7 cos X 

(39) 

In the case of the velocity derivatives, a considerable 
simplification in the direction cosines can be obtained by 
referring them to a set of model axes which coincide with the 
stability axes at zero angle of attack. The velocity deriva- 
tives are then evaluated first about model axes for all angles 
of attack and then transformed to stability axes. 

Inserting a,=0 in the above expression for the direction 
cosines results in the following values for the tests discussed 
herein, where the double primes refer to model axes: 

;I 
A” 

B” 

@’ 

D” 
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1 This mode used only in early tests (see fig. 7). 
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Use of these values for the direction cosines resulted in the 
determination of the velocity derivatives about model axes, 
using equation (17), (18), or (19), as explained in the section 
on Description of Apparatus. The transformation from 
model axes to stability axes was made with the following 
equations where the double-primed coefficients refer to model 

(40) 

/ 
The displacement clerivatives C,,,,, C,la, and C,, were not 

evaluated by the above procedure as there was no computa- 
tional advantage in this case. Equations (17) through (22) 
are developed about stability ascs for which p= --I/J and 
cr=8. The USC of these same relations for the model axes 
system depends on the presence in equations (17) through 
(19) of the terms clue to rolling velocity and the advantage in 
using the model axes system is that thereby certain terms are 
eliminated in the equations and simple solutions obtained for 
all angles of attack. On the ot,her hand, the use of this 
relation for the displacement clerivatives would require the 
introduction of corresponding terms due to roll deflection 
about model axes. It can be shown that when these terms 
are introduced, the resulting equations are as difficult from 
the computing standpoint as the direct evaluation of the 
displacement clerivatives about stability axes; therefore, in 
evaluating the displacement derivatives Cm,, Cns, and CL,, 
equation (20) and the clirection cosines for the stability 
system of axes, equation (39), were used. 

It is important to note the difference between the model 
axes system used for equation (40) and the system of body 
axes used in many stability calculations. The orientation of 
the two systems of axes coincicles but with the body axes 
system the sideslip angle p is defined as the angle between the 
relative wind and the plane of symmetry in the same manner 
as with the stability axes. With the approximations sin 
(r=fS‘, cos c= 1, the sideslip angle referred to body axes 
would become 

p= -#” cos am+‘p” sin Q, 

=(-CT?’ cos or,-IA” sin a,)u 
13 



This value for /3 could be inserted in equations (ll), (13)) and 
subsequent equations which would 1ea.d to modifications of 
equations (17) through (22) and these new equations would 
then represent the stability derivatives referred to body 
axes. Therefore, while there are many similarities in the 
two systems, the model axes system used in equation (40) is 
not a true system of body axes and should be considered only 
as a computational aid. 

of a Swept-Wing Model as Determined in Curved-Flow Test 
Section of Langley Stability Tunnel. NACA TN 2483, 1951. 

4. Jones, B. Melvill: Dynamics of the Airplane. Symmetric or Pitch- 
ing Moments. Vol. V of Aerodynamic Theory, div. N, ch. II, 
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